مطالعه سرعت فرآیند خشک کردن خلایی- تابشی ورقه‌های سیب‌زمینی با استفاده از مدل‌های رگرسیونی و شبکه عصبی مصنوعی

نویسندگان

چکیده مقاله:

در این تحقیق ورقه‌های سیب‌زمینی به صورت تک لایه با استفاده از گرمایش لامپ مادون قرمز تحت شرایط اعمال خلأ در سه سطح توان تابشی 100، 150 و 200 وات، سه سطح ضخامت ورقه 1، 2 و 3 میلی‌متر و چهار سطح فشار مطلق 20، 80، 140 و 760 میلی‌متر جیوه در سه تکرار آزمایشی تا رسیدن به محتوای رطوبتی 6% بر پایه تر، مناسب جهت انبارداری طولانی مدت، خشک شدند. نتایج نشان داد که در ضخامت یکسان ورقه سیب‌زمینی، با افزایش توان لامپ و کاهش فشار مطلق درون محفظه خشک‌کن، مدت زمان لازم جهت خشک کردن ورقه‌های سیب‌زمینی کاهش یافته است. از سوی دیگر، در اثر این پدیده چروکیدگی بیشتری در ورقه‌ سیب‌زمینی به وجود آمده است. طبق نتایج به دست آمده در رابطه با تعیین میزان چروکیدگی ورقه با استفاده از تکنیک پردازش تصویر می‌توان بیان کرد که ضخامت ورقه و دمای خشک کردن که ناشی از تابش لامپ مادون قرمز بوده تاثیر معنی‌داری (در سطح احتمال 1%) بر میزان تغییر شکل ورقه سیب‌زمینی داشته ‌است. همچنین نتایج حاصل از برآورد زمان خشک کردن به عنوان تابعی از توان تابشی مادون قرمز، میزان فشار مطلق، ضخامت ورقه و محتوای رطوبت محصول به کمک شبکه عصبی مصنوعی و مدل‌های رگرسیون خطی و غیر خطی نشان داد که مدل شبکه عصبی توانسته است بیشترین ضریب تبیین (9732/0R2=) را در مقایسه با مدل‌های رگرسیونی خطی (819/0R2=) و غیر خطی (870/0R2=) در رابطه با پیش‌بینی زمان مورد نیاز جهت خشک کردن سیب‌زمینی به دست آورد.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

پیش بینی محتوای رطوبتی پیاز خوراکی در طی فرآیند خشک کردن با استفاده از شبکه عصبی مصنوعی

پیاز خوراکی به­عنوان منبع غذایی و همچنین مصارف دارویی، امروزه بسیار مورد توجه قرار گرفته است. با افزایش بیش از پیش تولید پیاز، نیاز به انبارداری، افزایش ماندگاری، کاهش ضایعات و استفاده از پودر پیاز بیشتر احساس می­شود. به­همین جهت خشک کردن این محصول به­عنوان یکی از راهکارهای عملی همواره مطرح می­باشد. امروزه با توجه به مزایای فناوری هوش مصنوعی، استفاده از شبکه­های عصبی مصنوعی در سطح وسیعی برای شب...

متن کامل

مدل سازی خشک کردن اسمزی زردآلو با استفاده از الگوریتم ژنتیک - شبکه عصبی مصنوعی

ایران از نظر تولید زردآلو در جهان مقام دوم را دارد و مطالعه عوامل موثر بر خشک کردن این میوه و مقدار تاثیر آنها امری ضروری می باشد. لذا در این مطالعه تاثیر دمای محلول اسمزی در محدوده °C 25 تا °C 65، در مدت زمان 30 تا 120 دقیقه و غلظت محلول اسمزی در محدودۀ 30 تا 60 درصد (وزنی/وزنی) بر پارامترهای کاهش وزن، کاهش آب، جذب مواد جامد و نسبت دفع آب به جذب مواد جامد در طی خشک کردن اسمزی زردآلو مورد بررسی...

متن کامل

تخمین ضریب تبدیل شلتوک با استفاده از شبکه های عصبی مصنوعی در خشک کردن بستر سیال

The objective of this research was to predict head rice yield (HRY) in fluidized bed dryer using artificial neural network approaches. Several parameters considered here as input variables for artificial neural network affect operation of fluidized bed dryers. These variables include: air relative humidity, air temperature, inlet air velocity, bed depth, initial moisture content, final moisture...

متن کامل

تخمین ضریب تبدیل شلتوک با استفاده از شبکه های عصبی مصنوعی در خشک کردن بستر سیال

The objective of this research was to predict head rice yield (HRY) in fluidized bed dryer using artificial neural network approaches. Several parameters considered here as input variables for artificial neural network affect operation of fluidized bed dryers. These variables include: air relative humidity, air temperature, inlet air velocity, bed depth, initial moisture content, final moisture...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 47  شماره 2

صفحات  279- 289

تاریخ انتشار 2016-08-22

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023